yFQNX8OeO7P4blpjEsxvhIg54nkp5tWNAGIS9h32NErA/ichwOq6yCTIis+G
NmD3PenrJMYnYFlbdK0dnse6zpqlXU8nYMmT/dcfz2vUCZ7PomkTsOmM8N13
2GjG8Mb3mAlYG1RFFcbzXyr+gnzSdwJ2K6i9fYb9YOdtapLqBHzzfW4vivPk
UGODgMu6CVCuGDvsiy3pItikLDQBBisaAmuxo0+fdy8bHodCdKUqHudRUJ7H
lZ7ccWjJypKg4DwzFdOq0No4DuyVzYZtOA+XU31i56THIY7hQrYXx/2hkunw
iW8cRj7Ei7Vga+2Q6t8/MAYsia41P1bhfAxZWHExewy2P9ZvWMR5O9rx2axO
cQyygjpr89bg/vXmEr8tMQZX+15F7VmL73NK/7srzxioGenaDWO3ijzzYfWO
QuUTJfHNsgR6T70VvS5zFCj+ZVo/CALdzHH74iM3Cj1pTYsxigRaFQ8tZqtG
Yde0yGtjJQIlhcj9UuYehV/tKw1Z2Mm7usf+9I1AnoZdhrsygVJ7XUXdH49A
+eaFbvtNBHpMcrU9pDkCzUlVW+O1CLSJr/yQHnkErripxbhQCPRknOQhIz4C
3iV2+ZqbCVTw7ndQG2MYGhlDe9q34Pt2OnLLtnQYZD9pz+lvI1D5bZdv5obD
cK98h6YTfr6ii++7VDSG4c5yg9xuYwJ9PEYM8ZOGobaK3KltQqDKrZ2zlctD
UD/CVyyJCPSl2Xndjk9DYB3NahndRaB2UWcXfYsh0JPbPTK5F89TpFOf6sFB
eFra6GOD94fRJG+bSrNBqDjWrB+H94uRh6feuuoOQvmzaOV6N5zXZfFJt6QH
4YjwWkv7owTqnvi4c6l1AHZOllWH+uD826/2qMl2ALLchW+rBBPotfJfz1DL
fqig/w6VvU6gV9qCTasN+gG9T7qcFoP7jyptVKDaDxkKS1nkOAIVOlGkegX7
Qfg1S0f9JoHy4z0rLav/wFURj/gjt/HzebpuA9n0D4gdtVylkkWg8Kr0gUrj
Pgh/vc/V+gPe99YvsZ5q9kGYkcNBIcD9H3SE6xapDzTMUg5U03B+ksjrPZZ6
IWNo0MeiEt/v6Ye2S+97oe/onXavOgJlKWe922bUC60GJr85HTj/InMTHxv0
wPHAovtv5vA+FXfs/KqATnBlKf8xMiKh9IkgGSG7TpglE58dTEhIa9+lIu6t
nbDfkHHSD+F9WyJ1iDXzC9x3aXM9MsXnUxod2sN+QWkCaa+yNT6fY6CReuMn
2Mkn+oa54vPlq34rPf8BbpLjjeF4n09lvDfRm2iDWvMgnbZGEtp4f0Pm4/o2
8Nd4nJzUQkLFFnG8MgVtwEpbI+DQTkJfspxr2L5t8IBcqPjzJwktOC7YFQ+3
wsXi1zrcgyTkXKbnpdnfAk5SCpXFiyREhBfHKv1qgmiaS8IjdTIyULEtkkuq
hcq3oV3vbpLRs+M8axTLS4G3NnC+2l0OBY1JEEGkLOqB6N/TXRvkkaqm17hX
cSXVt8Vp9UyxPNrs9/Llmv5m6r/7ffaYmikgp6s5DyxX/6TaeNvp8M0ooPPr
dd5OdvRQi0d1ovSfKCJXnV1N4in91Ft1RW6rfJSQwKTg34O5w9TN7b8ZzaYb
0Ni0HmEbNE5VWx/1M1dRGe1tFHuiZ8agckVcdtqptBGpXU1Zt9WSRQ1cUbHp
DkUF/14+EBmlzqaKtNJDY7ZvwvtE4Pl/ts1Q417Y2zT6qCLuznK/AmKO+kBh
32ZWohoSEMveenBhnrregPWvRaU6Ckzoj7jNtUg1rFtZ7y2viWbLnJrV+5eo
PoPOsXwhWijmR4JC2vgStSTTI1DinBYiz1YHCU8vUf34loLkL2shUx1diRG+
ZSrpM/sLNU4LJTyXcHisskyN1hhujc3WQmqP6trkTy5Tw+O7dji1ayHXOOMf
0qxlKleG0I1aPQpi5odsilxYpr45Xsm3YExBEbVPz7J5ONTODqlUdVMKesov
u65VkkP1fnlmbZItBc1dnnFK2MahXrUz8fM7QcH9/OKX8L8cahfpd8CBNApS
Th5UP3eFQ7X6h1WYkklBb4pJF0auc6gbve6LdeZSUDc9lqhJ5VBJNqVy3qUU
pOF7/Ejkew51Nd9gyrWvFATRD5+xKznUX3fzyltaKcg+99uS51cOdVUrF7fc
Two622/6YGcXh/puZ/Cvt4MUtJL3wmTRIIeqHRp7SniCgh4olJgo0DlUaUeD
Tc5TFKSNRm8kzHKonh1h8wXzFFTlqtDN4XCo//8/5H9ObDou
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{-4, 2}, {0, 15.999999265306137`}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.77781558104029*^9, 3.777815593721952*^9},
3.777815628163661*^9, {3.777815705797893*^9, 3.7778157241730437`*^9}, {
3.777815854452551*^9, 3.777815876104371*^9}, 3.7778161058580294`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"f", "[", "x_", "]"}], ":=",
RowBox[{
RowBox[{"Log", "[", "x", "]"}], "+",
RowBox[{"x", "^", "2"}], "+", "x"}]}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Nesse", " ", "caso"}], ",", " ",
RowBox[{"nem", " ", "o", " ", "NSolve"}], ",", " ",
RowBox[{"nem", " ", "o", " ", "Solve"}], ",", " ",
RowBox[{
"nem", " ", "o", " ", "NRoots", " ", "acham", " ", "a", " ", "raiz"}]}],
" ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"NSolve", "[",
RowBox[{
RowBox[{
RowBox[{"f", "[", "x", "]"}], "\[Equal]", "0"}], ",", "x"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"f", "[", "x", "]"}], "\[Equal]", "0"}], ",", "x"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"NRoots", "[",
RowBox[{
RowBox[{
RowBox[{"f", "[", "x", "]"}], "\[Equal]", "0"}], ",", "x"}], "]"}],
";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"FindRoot", "[",
RowBox[{
RowBox[{
RowBox[{"f", "[", "x", "]"}], "\[Equal]", "0"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.777816147727356*^9, 3.7778161593178587`*^9}, {
3.777816206117524*^9, 3.7778163022129087`*^9}, {3.77781655081349*^9,
3.777816613790874*^9}, {3.777816651886318*^9, 3.777816653430728*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Solve", "::", "\<\"tdep\"\>"}],
RowBox[{
":", " "}], "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"The equations appear to \
involve the variables to be solved for in an essentially non-algebraic way.\\\
\\\\\"\\\", \\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/Solve/tdep\\\", ButtonNote -> \
\\\"Solve::tdep\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.7778166625723867`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"Solve", "::", "\<\"tdep\"\>"}],
RowBox[{
":", " "}], "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"The equations appear to \
involve the variables to be solved for in an essentially non-algebraic way.\\\
\\\\\"\\\", \\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \
ButtonStyle->\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/Solve/tdep\\\", ButtonNote -> \
\\\"Solve::tdep\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.777816662587987*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"NRoots", "::", "\<\"nnumeq\"\>"}],
RowBox[{
":", " "}], "\<\"\[NoBreak]\\!\\(\\*StyleBox[\\!\\(\\(\\(x + x\\^2 + \
\\(\\(Log[x]\\)\\)\\)\\) \[Equal] 0\\), \
\\\"MT\\\"]\\)\[NoBreak]\\!\\(\\*StyleBox[\\\"\\\\\\\" is expected to be a \
polynomial equation in the variable \\\\\\\"\\\", \\\"MT\\\"]\\)\[NoBreak]\\!\
\\(\\*StyleBox[\\!\\(x\\), \\\"MT\\\"]\\)\[NoBreak]\\!
Back to home |
File page
Subscribe |
Register |
Login
| N